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Abstract

Schwarzschild first suggested that the laminar structures observed in the high

Reynolds number Re=UL/_O(1012) solar photosphere are the result of turbulence rather

than a proof of its absence. He reasoned that since turbulence generates large turbulent

viscosities ut>>u, the "effective" Reynolds number Re=UL/vt,_O(1). Schwarzschild's

argument is, however, incomplete for it assumes that the entire role of the non-linear

interactions is to "enhance" viscosity. While this is not true in general, we present a proof

of how and why it may occur, thus completing Schwarzschild's argument. We further

discuss the fact that the same model non-local turbulence models have been shown to

reproduce LES data for a variety of flows pertaining to astrophysics, geophysics and

laboratory situations (at a fraction of the time).



I. The problem.

Recently, questionshave beenraisedasto the compatibility of the generally accepted

notion of turbulencewith the existenceof solar atmosphericstructures that exhibit laminar

features. It is important to notice at the outset that such structures are not a recent

theoretical discoveryor prediction sincethe knowledgeof their existencegoesback to 1890

(Minnaert 1958).To avoid unproductive epistemologicaldiscussions,we suggestto replace

the term turbulence with the more general term non-linear intev,ctions (NLI), of which

turbulence is a manifestation. The question can be rephrasedas: are laminar structures

compatible with the NLI?

assumptionthat the relation

alsoimplies the converse:

The inconsistency that has beset recent discussionsis the

NLI=0 -_Laminar Structures (la)

Laminar Structures-_NLI=0 (lb)

We shall show that (la) is correct but (lb) is not: laminar structures are compatible with

NLI or with the presence of turbulence understood in the most general terms.

Schwarzschild(1959)was the first to proposean explanation for the observedlaminar

features in the Re>>l solar atmosphere.He reasonedthat the laminar structures are due

to turbulencesincethe latter enhancesthe molecular viscosity v to

134
u-_ u+ut~ut~e / g /3 (2a)

where we have taken ut>>u and used the well known Richardson's law for ut (e is the rate

of energy input into the system). Eq.(2a) tells us that, contrary to the molecular visco;ity

which is size independent, the effective viscosity felt by a structure of size g depends on f.

Thus, the larger the structure, the larger the viscosity it feels. Recalling one of the most

well established experimental facts in Re>>l flows (Tennekes and Lumley, 1972)

_~U3l -' (2b)

we obtain ut~Uf which, once substituted into the Reynolds number, yields:



Re = __U/.,uu-ruU_ 't~O(1) (3)

Any proposed model for the laminar structures that is different from Schwarzschild's must

first prove that the latter is untenable. However, Schwarzschild's model is not cited and

thus not disproved, in a recent work (Nordlund et al., 1997) where turbulence concepts are

deemed irrelevant to explain the observed laminar structures.

Recently, Stothers (2000) has revisited the problem, has extended Schwarzschild's

argument also to the deep layer of the convective zone and has suggested that in fact the

existence of laminar-like structures may well be due to the effect of turbulence rather than

to the absence of it.

(I. The full argument.

Though physically attractive, the Schwarzschild-Stothers argument is incomplete for

:_t rests on the unproven assumption that the only role of the NLI is to renormalize the

molecular viscosity to a dynamical value Ud(k ) which, rather than being a constant like the

molecular u, depends on the size of the structure one considers (k~/-1):

u-_ Ud(k ) - u + ut(k ) (4)

Eq.(4), with a specific form for ut(k), was first suggested by Heisenberg and Obukhov and

shown to reproduce the Kolmogorov spectrum. In the present context such a spectrum is

irrelevant since we deal with structures much larger than those of the so-called inertial

regime and thus, the existence or not of a Kolmogorov spectrum is inconsequential (see,

however, Fig.1 of Chan and Sofia, 1996). The renormalization (4) is only part of the whole

effect of the NLI. It represents the effect on a given eddy k of all the smaller eddies and is

thus an UV (ultraviolet) effect. We are not interested in them since we focus on the other

part of the spectrum, the IR (infrared) part where the large scale structures are found. The

key question then becomes: How are these large scales affected by the NLI? This is the part

of the problem missing in Schwarzschild's original argument.
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III. An exact solution of the Navier-Stokes Equations.

Let us call ui(k ) the general stochastic (random) solution of the Navier-Stokes

equations (NSE) and let us consider the physically measurable correlation function,

Qij(_,_') = <(ui(t_)uj(_')> (5)

where n=k,w. In 1961, Wyld derived a formally exact solution of the NSE under the

assumption of homogeneity. His result for the trace of Qij' valid for an arbitrary Reynolds

number, is as follows:

cext(kQ(_)= ) +@turb(k) (6a)

w2 + k4_'_(k)

This result i' often cited as the Wyld-Dyson equation because is exact in the same sense as

the Dyson e luations for QED: they are formally exact in that they exhibit what NLI do

but do not provide the tools to compute the ingredients. In the QED case, the new

ingredients ,_re the polarization (or dielectric constant) and mass tensors. Here, one

observes the interesting fact that the effect of the NLI is twofold: 1) they renormalize the

molecular viscosity exactly as in Eq.(4) but, more importantly for our discussion, 2) the

large scales are also renormalized in the sense that the correlation of the arbitrary external

forces

is changed to:

ext_ <_xt _xt> (6b)ij

ext ¢.ext t (6c)
ij _ T1j + ¢ij

Thus, the "true force" felt by an eddy is not only the external force (e.g., buoyancy, shear)

t
but also an additional ft whose correlation function is ¢i" This renormalization is the morel

interesting of the two since is telling us that the NLI give rise to a "ghost force" ft which1

operates even when the external forces are no longer relevant, for example in the inertial

t
range. Without ¢ij' one could not explain why eddies that are no longer affected by the

external forces do not exhibit an energy equipartition spectrum but a spectrum of the form

E(k)~k -n (n=5/3, 3, etc).



It is important to realize that (6a) is also the solution of the following stochastic,

Langevin-type equationfor the randomvelocity ui(k )
0

k = f_(k) (7a)otui ( ) + _ixt(k) - k2vd(k)ui(k)

provided the external and turbulent forces do not correlate. Eq.(7a) substitutes for the

original NSE and exhibits an important feature: while the original NSE are non-linear in

the velocity fields and linear in the coefficients (which are actually constants), Eq.(7a) is

linear in the velocity field but non-linear in the coefficients. In practical calculations of real

turbulent flows, one does not need the form of the turbulent forcing ft but only the work
1

performed by it, which is obviously defined as:

At(k) = k2fd_kdk'<ui(k')f_(k)> (7b)

The equation for the Rey_,olds stresses Rij

aij(k,t ) = <ui(k)uj(k)> (7c)

can easily be derived from (7a) to be:

ext

_OOtRi;(k)j = A_j(k) - k2ud(k)Rij(k) + Aij (k) (7d)

In Canuto and Dubovikov (1996a,b,c) it was shown that (Pij is the projection operator):

A_j(k) = (8rk2) "1 Pij(k)At(k) (7e)

At(k) = - II(k)E-l(k) _kE(k) (7f)

Eq.(7f) agrees with the general result derived by Monin and Yaglom (1971):

¢turb(k ) ~ k_2E_l(k) (9 E(k)7K (7g)

For a model of turbulence to be viable, it must be able to reproduce the large variety

of data now available for flows of different nature. Model (7d-f) has been tested over more

than 80 turbulent statistics characterizing: freely decaying flows, shear generated flows,

buoyancy generated flows, 2D flows, turbulent flows under rotation, buoyant flows under

rotation, etc (Canuto et al., 1996, 1997, 1999). For example, in Re>>l shear flows, the

Reynolds stress spectrum predicted by the above model:

n12(k) = - Ael/ask -7/3 (8)

matches very closely the measured data of Saddoughi and Veravalli (1994). The same
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model wasusedin an astrophysicalsetting to explain the observedReynoldsstressesat the

surfaceof the sun (Canuto et al., 1994a)while the comparisonof the model results with

LES data, including the topology of up/down drafts of the convective regime, has been

successfully carried out by Kupka (1999).

W. A special group of eddies.

Inspection of (7f) shows that given an energy spectrum E(k) of arbitrary shape there

must exist a subset of eddies near the maximum of the energy spectrum for which

_i_E(k) ~0 (9a)

in which case the ghost forcing vanish,_s

cturb (9b)
ij -_0

and the Reynolds stresses satisfy an equation which is analogous to that of the linear case

with an enhanced viscosity,

,so R(k) ext----Aij (k) - (9c)_t ij k2ud(k)Rij(k)

For this group of eddies, and only for them, the whole effect of the NLI reduces to the

renormalization of the viscosity (4). Thus, the following can be stated:

In an arbitrary Re>>l flow, the NLI affect both small and large scales. For the latter,

there is a subset of eddies that feel only the effect of an enhanced viscosity and thus, they

behave as if they were governed by the standard laminar flow equations but with an

enhanced u which makes their effective Re~l. This completes Schwarzschild's argument.

V. A further test

Our argument is however not yet complete. We must still show that our model can

not only justify Schwarzschild-Stothers argument but is also capable of reproducing

DNS/LES data. Otherwise it could be (somewhat perversely) argued that the above result

is the outcome of a peculiar model. There is also another reason. In studies of stellar

convection, the impression has been created that LES have revealed a set of completely



new phenomenathat no other formalism is capable of reproducing. It has even been

suggestedthat there is a new paradigm (Spruit, 1999). We fail to understand this

conclusionprimarily becausethe samephysical phenomenadescribed by stellar LES are

known to occur in geophysicswhereno new paradigm was invoked. First, as Lumley has

pointed out (1990), non-local, second-order closure models (SOC models for short) are

capableof reproducing the major features (global and topological) of turbulent flows. If,

however, one arbitrarily assumesSOC to mean only second-order moments (the local

limit), then important effectsare arbitrarily Ieft out and the model becomes incapable of

reproducing any topological feature. But this is 'he outcome of an arbitrary definition of

the SOC model not required by the model itself. Comparing LES results with a local model

is a biased procedure leading to a foregone conclJsion for it employs a turbulence model

that does not contain what is required for a fair comparison. As Lumley (1990) has

remarked, it is like a Fourier representation that _mits all Fourier modes above the second

and leaves out much of interest in the function. Lumley (1981) has shown that use of third

and fourth order moments is indeed the key to capture information about phases. To

further prove the point, we cite several examples.

1) Petrovay (1990) showed that even the local MLT plus use of third--order moments

can explain the major topological features of convective motions,

2) non-local SOC models reproduce the major results of three different LES for the

convective planetary boundary layer, specifically, updrafts, donwdrafts, filling factors, etc.

(Canuto et al., 1994b; Canuto and Cheng, 2000)

3) within the astrophysical context, Kupka (1999) has shown that the LES convective

fluxes and down/up drafts are also reproduced by non-local SOC models,

4) a list of some 80 laboratory and/or numerically computed turbulent statistics

belonging to a variety of turbulent flows has been reproduced by such models (Canuto and

Dubovikov, 1996-1999),

5) in the case of stellar convection, the flux conservation law rt.ads
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F(conv) + F(rad) + F(_) =constant (10a)

whereF(_) is the flux of turbulent kinetic energy.Sincewecanwrite that

F(conv) = FU(conv) + Fd(conv)

where the u/d stand for up and down fluxes, and since (Chan and Sofia,

Cattaneo et al., 1991) numerical results show that

Fd(conv) + F(_) z 0 (lOt)

we are left with

(10b)

1986, 1989;

FU(conv) + F(rad) = constant (10d)

where FU(conv) represents the broad updrafts of disordered notion that the SOC models

traditionally compute. Thus, LES lead not to the conclusior that turbulence models have

become irrelevant, but to the contrary, that they offer the way ,_o compute the only left-over

mechanism to transfer heat. A key ingredient is of course the large cancellation (10c) with

the consequence that the only transport left is by the broa(, updraft motion. This same

point was first made by Cattaneo et al. (1991) in their conclusions.

There is, however, a larger issue, regarding the origin and universality of the down/up

drafts picture. In this context, it is important to recall that these topologies ere well known

in geophysics, specifically in the study of the strongly convective planetary boundary layer

(Deardorff, 1974, 1980, 1985; Willis and Deardorff 1976; Wyngaard and Brost. 1984;

Moeng, 1984; Wyngaard, 1987; Schmidt and Schumann, 1989; Moeng and Wyngaard,

1989). As for universality, we recall that one must distinguish three cases (Moeng and

Rotunno, 1990):

1) convection due to heating from below: this corresponds to the layer above the earth's

surface (without clouds). SOC models and LES show that the skewness of the velocity field:

S w = w--3(w-2) -3/2 (lla)

is positive

S >0 (llb)
W
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and sincethe filling factors a of the updrafts (1-a for the downdrafts) given by

½11 (4+$2) -_1a = -S w

implies that:

(11c)

a<l/2 (lld)

which corresponds to narrow updrafts and broad downdrafts. These predictions are in full

agreement with the measured data (LeMone, 1989; Zilitinchevich et al., 1999, fig.l).

2) cc.:vection due to cooling from above: this corresponds to the case of the ocean or to the

atmosphere topped with clouds which radiatively cool it (Nicholls and Leighton, 1986;

Moeng and Schumann, 1991). In this case, the skewness Sw is negative ant one has narrow

downdrafts and broad updrafts. Clearly, this physical situation is the one l hat corresponds

more closely to what happens in the upper part of the solar convective zor e where there is

cooling by radiative losses,

3) convection due to heating from below and cooling from above: this is the most natural

state of the atmosphere with cooling clouds as well as the situation in stars where there is

heating from below and cooling from above due to radiative losses. Such a situation is also

found in Rayleigh-Benard convection. The resulting topology is understood as _t

combination of the skewness distribution of the bottom-heating and top-cooling cases.

In conclusion, non-local SOC models have all the physical ingredients and have been

explicitly shown, to reproduce LES data with the added conspicuous advantage of being

extremely flexible and of requiring a minute fraction of the computer time required by any

LES. From the physical viewpoint, these studies have shown that convection exhibits the

same general features irrespectively of whether it occurs in a star or in the earth's

atmosphere, a "unification" that we deem much more scientifically valuable than any

priority claim, even if the latter were true.

VI. Conclusions

We have shown that (la) is correct while (lb) is not. In fact, in any Re>>l flow



where the NLI are important, there exists a group of large scalestructures for which the

NLI effect is only to enhanceviscosity. Thesescalesare governedby a linear dynamics not

because there are no NLI but because there are. This completes Schwarzschild-Stothers

argument which assumed, without proof, that NLI only produce (4). Laminar structures

can co-exist with smaller eddies that behave in a way described by turbulence models.

We find no r_son to suggest that astrophysical LES have given us a new vision of

convection to call _or a new paradigm. In fact, the same physical situation is found in other

contexts. Specifically, convection in the earth's surface boundary layer, with heating from

below, radiative cooling from above and a strong density decrease, has been known to {ire

rise to topological structures which have also been found in the stellar case because of the

similarity of the basic physical mechanisms that operate. It is therefore not a questio:, of

priority but a confirmation of general features of convective flows. As to the non-local SOC

models, they have matched LES data quite well, they require a fraction of the t.me

required by the LES and are the only ones with a realistic chance of being hooked-up zo a

stellar structure/atmosphere code.
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